Page Proof Instructions and Queries

Journal Title: OSJ
Article Number: 799534

Thank you for choosing to publish with us. This is your final opportunity to ensure your article will be accurate at publication. Please review your proof carefully and respond to the queries using the circled tools in the image below, which are available by clicking “Comment” from the right-side menu in Adobe Reader DC.*

Please use only the tools circled in the image, as edits via other tools/methods can be lost during file conversion. For comments, questions, or formatting requests, please use []. Please do not use comment bubbles/sticky notes 📝.

*If you do not see these tools, please ensure you have opened this file with Adobe Reader DC, available for free at https://get.adobe.com/reader or by going to Help > Check for Updates within other versions of Reader. For more detailed instructions, please see https://us.sagepub.com/ReaderXProofs.

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Please confirm that all author information, including names, affiliations, sequence, and contact details, is correct. All author information is correct and confirmed.</td>
</tr>
<tr>
<td></td>
<td>Please confirm that all author names are presented in the following order to allow for searchability: First name followed by middle names or initials followed by Last name. Confirmed.</td>
</tr>
<tr>
<td></td>
<td>Please review the entire document for typographical errors, mathematical errors, and any other necessary corrections; check headings, tables, and figures. Document reviewed and approved.</td>
</tr>
<tr>
<td></td>
<td>Please confirm that the Funding and Conflict of Interest statements are accurate. Confirmed.</td>
</tr>
<tr>
<td></td>
<td>Please ensure that you have obtained and enclosed all necessary permissions for the reproduction of artistic works, (e.g. illustrations, photographs, charts, maps, other visual material, etc.) not owned by yourself. Please refer to your publishing agreement for further information. All necessary permissions obtained.</td>
</tr>
<tr>
<td></td>
<td>Please note that this proof represents your final opportunity to review your article prior to publication, so please do send all of your changes now. Document reviewed and approved. No changes required.</td>
</tr>
<tr>
<td></td>
<td>Please check if the correct license type (CC-BY-NC/CC-BY/CC-BY-NC-ND) appears on your article and matches with what you had specified in the license agreement form. License type is correct.</td>
</tr>
<tr>
<td>AQ: 1</td>
<td>Please approve edit made to the article title. Approved.</td>
</tr>
<tr>
<td>AQ: 2</td>
<td>please approve edits made to Table 1. Approved.</td>
</tr>
<tr>
<td>AQ: 3</td>
<td>Please note that the content “The study was conducted at Pharmaseed Laboratories …” has not been retained as it is provided in the text. Approved.</td>
</tr>
</tbody>
</table>
Local implantation of autologous adipose-derived stem cells increases femoral strength and bone density in osteoporotic rats: A randomized controlled animal study

Ofir Uri, Eyal Behrbalk and Yoram Folman

Abstract

Background: Deficient osteogenic capacity of bone marrow stem cells plays a critical role in the pathophysiology of osteoporosis. Adipose-derived stem cells (ADSCs) have emerged as a promising source of skeletal progenitor cells. The capacity of ADSCs to undergo osteogenic differentiation and induce mineralized tissue formation may be beneficial in the treatment of osteoporosis. We question whether administration of autologous ADSCs into the proximal femur of osteoporotic rats will induce osteogenesis and enhance bone quality and strength. Materials and Methods: Thirty ovariectomized female rats were randomly assigned to one of the two treatment groups: (1) percutaneous implantation of autogenous ADSCs-seeded scaffold into the proximal femur and (2) percutaneous implantation of non-seeded scaffold. The contralateral untreated femur served as control. The effect of treatment on bone characteristics was assessed at 12-week follow-up by micro-computed tomography analysis, mechanical testing, and histological analysis. Results: The mean cortical thickness, total bone volume density, and bone load to failure in femora injected with autologous ADSCs-seeded scaffold was significantly higher compared to femora injected with non-seeded scaffold and compared to the untreated control femora (p < 0.01). Histological examination of the injected specimens revealed complete osseo-integration of the scaffolds with direct conversion of the ADSCs into osteoblasts and no inflammatory response. Conclusions: Autogenous ADSCs implantation into the proximal femur of rats with ovariectomy-related osteoporosis promoted bone regeneration and increased bone strength at short-term follow-up. These findings highlight the potential benefit of autogenous ADSCs in the treatment of osteoporosis. Level of Evidence: Level I, randomized controlled trial, animal study.

Keywords

Adipose-derived stem cells, animal model, bone regeneration, osteoporosis, osteoporosis treatment, stem cell therapy

Date received: 5 November 2017; Received revised 12 March 2018; accepted: 17 August 2018

Introduction

Femoral neck fractures in elderly patients are serious consequence of osteoporosis and are associated with considerable morbidity, mortality, and economical burden. Current prevention methods focus on patient education, exercise programs, and antiresorptive pharmacotherapy. Cement reinforcement of the femoral neck has also been suggested as prevention for osteoporotic fractures.
Despite the benefits of these prevention methods, they are associated with many disadvantages, which highlight the need for further treatment options.7,8

The use of mesenchymal stem cells as a regenerative therapy for osteoporosis is a topic of current interest. The in vitro and in vivo osteogenic capability makes stem cells a promising source of skeletal progenitor cells.9,10 Stem cell therapy has shown promising results in the treatment of various musculoskeletal pathologies, for example, articular cartilage defects,11,12 bone defects,13 meniscal injuries,14 and degenerative disk disease15 in numerous studies. Nevertheless, only a few studies investigated the effect of stem cells therapy for the treatment of osteoporosis.16–19

Autologous adipose-derived stem cells (ADSCs) have emerged as an attractive alternative to the traditional bone marrow-derived stem cells because of their availability and characteristics (e.g. relatively easy to cultivate, pluripotency, lack of immunogenicity).16–19 The use of ADSCs has gained popularity over the past decade in bone and cartilage tissue engineering.20 Nevertheless, further research is required before ADSCs therapy could be implemented for the treatment of osteoporosis in humans.16,20

We hypothesized that local percutaneous implantation of autologous ADSCs to the proximal femur of osteoporotic rats will induce osteogenesis and enhance bone quality and strength. To evaluate the osteogenic potential of ADSCs implantation, we used micro-computed tomography (CT), mechanical, and histological analyses.

Materials and methods

Experimental animals and procedure

This randomized controlled trial was conducted at Pharmaseed Ltd Laboratories (Ness-Ziona, Israel). We used thirty 5-month-old bilateral ovariec-tomized female rats of the Sprague-Dawley strain weighing 260–320 g. The animals were kept at 23°C with a 12-h light cycle and free access to standard laboratory food and water. The animals were selected and treated by the specialized laboratory team, who performed the ovariec-tomy and followed up the animals during the experiment. The ovariec-tomy was performed using a 3-cm long midline dorsal skin incision halfway between the middle of the back and the base of the tail according to the technique described by Lasota and Danowska-Klonowska.21 Osteoporosis was confirmed by the presence of extensive trabecular deterioration in high-resolution micro-CT analysis.22

The animals were randomly assigned to one of the two treatment groups (15 animals per group): (1) percutaneous implantation of autologous ADSCs seeded in hyaluronic acid scaffold into the proximal femur metaphysis and (2) percutaneous implantation of non-seeded hyaluronic acid scaffold into the proximal femur metaphysis. The contralateral untreated femur served as control in all the cases. The study was conducted in accordance with the Israel Animal Welfare Act (1994) and the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. The procedure was carried out under ether anesthesia. Hyaluronic acid-based scaffold (0.2 ml) with or without ADSCs (6 × 10^5 cells), according to the group assignment, were injected percutaneously into the proximal femur metaphysis of the rats via 18-gauge needle connected to a 1-ml syringe under fluoroscopic control. The animals were euthanized at 12 weeks. The femora were excised and underwent micro-CT scanning, mechanical testing, and histological analysis. The results of the micro-CT scanning and histological analysis were reviewed by a senior radiologist and histopathologist, respectively, who were blinded to the treatment group.

ADSCs cultivation

Autologous ADSCs were isolated from the abdominal fat of the animals. Approximately 2 ml of abdominal fat were aseptically removed from the abdomen of each rat. The samples were washed twice with 10 ml phosphate-buffered saline (PBS), digested with 1.5 mg/ml collagenase, and then filtered through a 250-μm nylon mesh. Red blood cells were removed with erythrocytes lysis buffer. The remaining cells were plated in culture flasks (i.e. F-12/Dulbecoo’s modified Eagle’s medium containing 10% fetal calf serum and 1% antibiotics) at 37°C in a humidified atmosphere and 5% carbon dioxide. The cells were allowed to reach 80% of confluence and were then detached from the culture plate using trypsin–ethylenediaminetetraacetic acid solution, washed with PBS, and plated again. After three passages, the multipotent ADSCs were seeded on 3-D hyaluronic acid-based spongy scaffold with pore size up to 400 μm.23

Outcome measures

To assess the effect of ADSCs implantation on bone quality and strength, we used the following assessment tools:

(1) High-resolution micro-CT analysis of bone morphology.24 Cortical bone thickness and bone volume to total sample volume ratio (BV/TV) were assessed using high-resolution micro-CT analysis (μCT40, Scanco Medical, Bruttisellen, Switzerland). Since the rats’ femoral cortex has a noncircular profile with uneven wall thickness, we determined the cortical thickness as the mean of six measurements evenly spaced around the cortex on transverse micro-CT views at the level of the diaphysis center.

(2) Mechanical testing of bone strength: This was assessed by a static three-point axial compression bending test until bone failure. The femur specimens were mounted to the testing device (Instron-2810, Instron Worldwide, Waltham, Massachusetts, USA) at the upper and lower ends of the bone, while
bending force was applied at the center of the specimen with the actuator displaced at 2 mm/min in the posterior–anterior axis until failure.

(3) Histological analysis: The specimens were stained with hematoxylin and eosin and were examined under standard light microscope.

Table 1. Summary of outcome measures.

<table>
<thead>
<tr>
<th></th>
<th>Rats injected with ADSC-seeded scaffold</th>
<th>Rats injected with non-seeded scaffold</th>
<th>p Value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical thickness (µM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injected femur</td>
<td>797.8 ± 37</td>
<td>716.6 ± 52</td>
<td><0.001</td>
</tr>
<tr>
<td>Contralateral femur (control)</td>
<td>714.2 ± 46</td>
<td>707.1 ± 42</td>
<td>0.66</td>
</tr>
<tr>
<td>p value<sup>c</sup></td>
<td><0.001</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>BV/TV (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injected femur</td>
<td>47.2 ± 4</td>
<td>41.7 ± 5</td>
<td>0.003</td>
</tr>
<tr>
<td>Contralateral femur (control)</td>
<td>42.1 ± 4</td>
<td>40.8 ± 4</td>
<td>0.39</td>
</tr>
<tr>
<td>p Value<sup>c</sup></td>
<td><0.001</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Load to failure (N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injected femur</td>
<td>71.3 ± 4</td>
<td>66.2 ± 5</td>
<td>0.006</td>
</tr>
<tr>
<td>Contralateral femur (control)</td>
<td>65.4 ± 3</td>
<td>64.7 ± 4</td>
<td>0.61</td>
</tr>
<tr>
<td>p value<sup>c</sup></td>
<td><0.001</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

^aValues are presented as mean ± standard deviation.

^bComparison between the seeded and non-seeded groups for the injected and control sides. All parameters were compared using unpaired two-tailed t-test.

^cComparison between the injected and control sides within each treatment group. All parameters were compared using paired two-tailed t-test.

Figure 1. Three-dimensional reconstructions of the distal femur using high-resolution micro-CT system (µCT40; Scanco Medical, Bruttisellen, Switzerland) with 20 µm voxel size. (a) A femur specimen injected with non-seeded scaffold. (b) A femur specimen injected with autologous ADSCs-seeded scaffold. CT: computed tomography; ADSC: adipose-derived stem cells.
Data analysis

Parameters are described as mean ± standard deviation. The means of cortical thickness, BT/TV, and load to failure were compared between the ADSCs-seeded and non-seeded groups for the injected and control sides using unpaired two-tailed t-test. The means of the injected and control sides within each treatment group were further compared using paired two-tailed t-test. Statistical analysis was performed using MedCalc Statistical Software version 17.5.3 (MedCalc Software bvba, Ostend, Belgium). With the α level set at 0.05, we determined prospectively (based on preliminary results) that 12 specimens per group would give 90% power to identify a 10% difference in load to failure, cortical thickness, and BV/TV ratio between the intervention groups.

Results

Comparisons between the ADSCs-seeded and non-seeded groups and between the injected and untreated contralateral (control) femora within each group are summarized in Table 1. The mean cortical thickness and BV/TV in rats’ femora injected with autogenous ADSCs-seeded scaffold was significantly higher compared with rats’ femora injected with non-seeded scaffold (by 11% and 13% respectively; p < 0.01) and compared with untreated control femora (both by 12%; p < 0.001) (Figures 1 and 2). The mean bone load to failure was also significantly higher in femora injected with autogenous ADSCs-seeded scaffold compared with non-seeded scaffold and control femora (by 8% and 9%, respectively; p < 0.01). The mean cortical thickness, BV/TV, and bone load to failure values of femora injected with non-seeded scaffold were similar to those of the untreated control femora. Similar values of all outcome measures were found in untreated (control) femora of both treatment groups. Histological examination of the injected specimens revealed complete osseointegration of both ADSCs-seeded and non-seeded scaffolds with direct conversion into osteoblasts and no inflammatory response (Figure 3).

Discussion

Deficient osteogenic capacity of bone marrow stem cells plays a critical role in the pathophysiology of osteoporosis and is inadequately addressed by the common prescribed medication for osteoporosis which focuses mainly on inhibiting bone resorption. The use of multipotent stem cells may enhance bone osteogenic potential and may reduce the risk of undesirable osteoporotic fractures. ADSCs offer many advantages over other sources of mesenchymal stem cells and have emerged as a promising source of skeletal progenitor cells. We hypothesized that implantation of autologous ADSCs into the femora of osteoporotic rats will induce osteogenesis and enhance bone quality and strength. This study was designed to investigate this hypothesis.

Our findings support the study hypothesis and show that local implantation of autogenous ADSCs seeded on hyaluronic acid-based scaffold significantly improved bone morphological characteristics (cortical thickness and BT/TV) and increased bone strength (assessed by three-point bending test) compared with implantation of non-seeded scaffold and untreated control femora. Improved bone morphologic characteristics after local implantation of ADSCs was found in other osteoporotic animal model studies. Mirsaidi et al. administered autologous ADSCs to tibiae of osteoporotic mice and found a significant increase in trabecular bone volume density and trabecular number compared with the untreated tibiae at 6 weeks analysis. Ye et al. investigated the effect of ADSCs implantation into the distal femur of osteoporotic rabbits. Twelve-week post-implantation analysis revealed significantly more bone...
formation in femora treated with ADSCs compared with control femora. The average bone density and bone thickness in the ADSCs treated femora were approximately 30% higher than in control femora. This increase in bone morphometric parameters seems higher compared with approximately 10% increase found in our study; however, the differences in the animal model and outcome assessment tools preclude comparisons between the studies.

Monitoring the efficacy of antiosteoporotic therapy is essential for successful osteoporosis management. Change in bone mineral density and bone turnover markers are considered as valid indicators of fracture risk reduction in humans. Whether the 10% increase in bone strength found in our animal model would be meaningful clinically in fracture risk reduction and not only statistically significant remains questionable. Furthermore, despite similarities in pathophysiological responses between human and rat skeleton, which make the rat a valuable model in osteoporosis research, the correlation between increased bone strength in rats treated with ADSCs and fracture prevention in humans should be further studied.

Histological examination of the specimens treated with ADSCs-seeded scaffold in our study showed more mineralized bone formation compared with non-seeded scaffold and untreated specimens with complete osseo-integration of the scaffold and direct conversion of the ADSCs into osteoblasts and no inflammatory response. ADSC: adipose-derived stem cells.

Figure 3. Histological specimens stained with hematoxylin and eosin. (a) A femur specimen injected with non-seeded scaffold showing complete osseo-integration of the scaffold and no inflammatory response. (b) A femur specimen injected with ADSCs-seeded scaffold showing complete osseo-integration of the scaffold with direct conversion of the ADSCs into osteoblasts and no inflammatory response. ADSC: adipose-derived stem cells.
animal model consisted of ovariectomized female rats. Whether osteoporosis of other etiologies, especially age-related osteoporosis, would respond similarly to ADSCs therapy should be further studied. Finally, bone strength in this study was assessed only by a static bending test to failure. Performing additional mechanical tests could add to our findings, nevertheless we believe the data presented are of scientific value.

In conclusion, our results show that autogenous ADSCs injected into the proximal femur of rats with ovariectomy-induced osteoporosis induced mineralized bone formation and promoted bone regeneration and strength at short-term follow-up. These findings highlight the potential benefit of autogenous ADSCs in the treatment of osteoporosis. The long-term results of ADSCs implantation and its effect on age-related osteoporosis should be further studied.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

